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Abstract

We will consider two formulations of induction law: differential, based on Faraday conception of wire interaction with magnetic field, and integral, based on Maxwell conception of interaction of the loop area with the crossing flux.

Using the models of rectilinear loop with a movable side and of unipolar generator, we will show that Maxwell conception remains true exceptionally for the loop with a movable side. Only for such model this formulation predicts the same results as Faraday formulation does. At the same time, Faraday formulation is true both mathematically and phenomenologically for a broad class of models in homogeneous and inhomogeneous magnetic fields.

To check it experimentally, we developed a set with the transforming secondary loop and put it into an inhomogeneous time-variable magnetic field. Obtained experimental results will unambiguously corroborate that Faraday conception reliably describes the induction process on the basis of wire interaction with magnetic field, and that Maxwell integral conception is illegal.

Obtained experimental results have also corroborated that it is legal to use the compensation loop with a single probe in studying the local magnetic fields, which we used in the before study of induction in an air gap of transformer.
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Introduction

Before, in [1], we studied electromotive force (emf) induced in a single wire and in this study used as a probe a compensative loop (see Fig. 1 that replicates Fig. 12, page 79 of [1]), whose central rod was located in the studied magnetic gap.



Fig. 1. General appearance of compensative loop for studying the emf induced by time-variable magnetic field in a single wire AB

Multiple discussions followed that publication at physical forums and showed that for some colleagues the possibility of excitation of parasitic emf in the tapping wires of loop and its influence on the experimental indications seems not enough substantiated.

The cause of colleagues' doubt was that the issue of parasitic emfs in tapping wires is connected with another, no less important problem ( the old-rooted idea that we have to calculate the induction emf excited by a time-variable magnetic field by way of integrating over the area of secondary loop.

This difficulty is complicated for resolving because, on one hand, when measuring the induced emf, we always make a secondary loop. On the other, the emf distribution along the wire of secondary loop in inhomogeneous magnetic field never was checked ( or these studies and their technique never were published. No one drew an attention to these features, the more that it is practically impossible to tune away from the tapping wires. This problem became topical when the emf in a single wire has been studied, as the issues, whether it is legal to find the emf, integrating over the loop area, and whether the phenomenology of the induction process and, finally, the integral form of Maxwell equations are legal, highly depend on its solution.

In this paper we will present the results of study which corroborates that the induction along the wire of secondary loop within an inhomogeneous magnetic field is not uniform. This study will refine the phenomenology of induction process in time-variable magnetic fields and will permit us to substantiate additionally, how much legal is it ( to use the compensative loop in measuring the emf induced in local time-variable magnetic field.

2. Substantiation of the experimental technique 
To understand better the essence of studied problem, let us re-read the definition of induction in time-variable magnetic field.

As is known and as we mentioned in [1], the definition of induction in time-variable magnetic field is traditionally introduced by the analogy with the induction of current in a wire which crosses the force lines of magnetic field. This last has not one but two definitions. "Summing up the results of multiple experiments, we can say that the phenomenon of electromagnetic induction means that the emf arises in a wire which crosses the force lines, or in a closed wire, when it changed its coalescence with the magnetic flux. In accordance with it, we can give two formulations of the law of electromagnetic induction: first related to the section of wire and second to the closed loop. The first of them is called Faraday formulation, or differential form of the law, as it can be applied to an however small element of the loop, and the second is Maxwell formulation, or the integral form of the law" [2, p. 416]. 

Despite both formulations bring us to the same mathematical expression
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where 
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 is the emf of induction and 
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 is the flux of vector of magnetic induction, these formulations are not fully identical, the violation appears at the level of phenomenology.

To make sure, consider some rectilinear loop with a movable boundary, as shown in Fig. 2. Let this loop first be located within some homogeneous permanent magnetic field with the inductance 
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r

.



Fig. 2. The pattern to determine the emf of induction induced in the loop with a movable side, which is located in a permanent homogeneous magnetic field with inductance 
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Calculating after the Lorenz formula, which describes the differential form of induction law, we yield the following result for the model in Fig. 2, noting the direction of magnetic field induction: "The strength of this field (the electric field of induction ( authors) will be determined from the condition that the electric and magnetic forces affecting the charges within the wire are equal:
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or
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 or
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[2, p. 420]. As the field strength in this case arises in the unit of length of movable wire, the full value of emf will be
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In its turn, we can express the speed of motion of movable side of loop as the variation of loop length:
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Substituting (6) into (5), we will yield finally
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If we calculate the induction emf on the basis of Maxwell formulation, we will yield straight (7). As was expected, in case of homogeneous field both formulations lead us to the same result.

Now let us consider a loop with a movable side in the inhomogeneous field. To simplify, let us think the inductance of this magnetic field varying only along the axis y ( i.e., in the same direction in which the movable side of loop moves, and along the movable side the magnetic field will be thought time-constant. To visualise better, suppose also that the inductance depends on y in an exponentially decreasing way like
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Now, calculating through Lorenz formula (3), we yield
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Calculating after Maxwell, we have to find the integral of flux of inductance vector over the loop area. With it
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 Given (10), the expression for induction emf will be
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Comparing (9) and (11), we see that the mathematical expressions describing the emf after Faraday and Maxwell are fully identical. And we can show that this coincidence of mathematical descriptions of phenomenon remains also in general case of movable-boundary loop interacting with inhomogeneous magnetic field. Let us put the loop into a magnetic field of the most general type:
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where 
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n

r

 is the unit vector of magnetic field direction, and 
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r

 is the vector of loop area which this magnetic field crosses.

To calculate the expression of induction emf after Faraday, we now have to take into account the inhomogeneity of considered field and connected with it inhomogeneity of emf induced along the movable side of loop. So the general expression will be in the integral form and vectorial:
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According to the properties of scalar product (see, for example, [3, p. 160], and given (6) and the fact that we change the size of only one side of loop, we can transform the right-hand part of (13) as follows:



[image: image20.wmf]11

11

.

ind

hh

hh

UvBdhdhvB

cc

dbdS

dhBB

cdtcdt

éù

éù

=´×=´×=

ëû

ëû

éù

=´×=×

êú

ëû

òò

òò

rr

rr

rr

r

r

r

rr


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (14)

Calculating the induction emf after Maxwell, we have to write
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With it we come to (14) with the only difference that in (14) the derivative with respect to time is taken only over the loop area, while in (15) this derivative is taken of the integral as the whole. In the view of mathematical analysis the compared expressions are outwardly non-identical. But if we note that the magnetic field itself does not depend on time, only the loop area changes, in this case we have in (15) to put the derivative versus time under the integral sign in some unusual way, differentiating not the integrand but the very differential of the loop area (!). Then we will yield 
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Though such transformation is unusual, we can easily show that we did no mathematical violation, there really is differentiated not the variable for which we integrate but the very integrand. Let us prove this as the theorem.

THEOREM 1. If in the integral
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the integrand 
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does not explicitly depend on time t and the integration boundary 



[image: image25.wmf](

)

,

LLt

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (18)

the equality 
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is true.

Actually, if the integrand does not depend on time explicitly, and we integrate with respect to the variable l, the integral 
[image: image27.wmf]I

also does not depend on time explicitly. With it the following chain of transformations
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is true, as was to be shown.

For our case of flux of vector of magnetic induction 
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, when we integrate over the cross-section of loop, we can write (15) as
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With it
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is the integrand for the integral with respect to h. So in accordance with the theorems of mathematical analysis and given the boundary of integrating for h is time-independent, we have a right to introduce the derivative with respect to time under the sign of integral. With it we will yield



[image: image32.wmf](

)

(

)

11

.

ind

hbhb

dd

UdhBsdbdhBsdb

cdtcdt

æö

=×=×

ç÷

èø

òòòò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (23)

As we can see, according to the statement of problem, the integrand in (23) fully satisfies the Theorem 1, due to which, according to (19), we may substitute in (23) as we did. Then we yield
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which coincides with (14) describing the process after Faraday.

This evidences that if we approach to the induction process in the narrow sense, taking as the basis the motion of the side of loop in magnetic field, Faraday and Maxwell interpretations really are mathematically indistinguishable. But in the view of phenomenology there is an essential difference.

If we consider the induction process in the view of Faraday interpretation, the essence of induction process is determined through the immediate interaction of magnetic field with a wire moving in this field. But if we describe this process from the view of Maxwell, it appears that the charges of wire interact with the whole field crossing the loop, in that number with that part where the charges are absent. With it we have to suppose some special "awareness" of charges of wire as to the field out of their location. Not in vain Schtrauff, when speaking of these formulations, specified so: "In practical application of these formulations we have to remember that we have to interpret 
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 differently, dependently on, whether we calculate 
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 arising in the wire section or in the closed loop" [2, p.416].

To clear up, which of two formulations does not reflect the reality ( or rather, which is not enough general ( we can consider another scheme, in which the emf inductance is present in the wire moving in the magnetic field. We can use for this purpose a no less known model of unipolar generator, see Fig. 3.



Fig. 3. Standard unipolar generator

In Fig. 3 we see that the standard unipolar generator, the same as the loop with a movable side, has the secondary loop, but the area of this loop does not change with the disk rotation. This area is perpendicular both to the rotation axis of disk and to the direction of magnetic field. Given the magnetic field inductance is here constant, in accordance with Maxwell formulation we cannot state that the flux of vector 
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 through the cross-section of secondary loop changes. The more that the vector of plane 
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 of the secondary loop is perpendicular to the direction of magnetic field. Due to this, according to Maxwell formulation, even under condition of homogeneous magnetic field, we yield
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It is understandable that with an inhomogeneous but time-constant magnetic field the result will be also zero.

As opposite to this, if we use the Lorenz formula to find the induction emf, we yield
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where 
[image: image40.wmf]R

 is the radius of disk. With it the left-hand part of (26) will remain nonzero both in homogeneous and inhomogeneous magnetic field. And this result is corroborated experimentally.

It is interesting that (26) also cannot be transformed to the following integral over the area:
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where 
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 determines the vector of angular shift of disk, and 
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 determines an elementary area on the disk interacting with the magnetic field. Thus, we see that if we determine the inductance in Maxwell formulation not through the area which the taps cover but through the cross-section which interacts with magnetic field immediately, the Maxwell formulation describes the processes in unipolar generator the same well as Faraday formalism. So we can lift the duality in description of induction existing now. True, this fully changes the today meaning of Maxwell formulation. In reality, the phenomenology of induction process in a moving wire is based on the charges of wire crossing the force lines of magnetic field. The vector of flux of magnetic induction in general case is irrelevant to the process of this kind of induction. The emf is induced exceptionally in that part of secondary loop which is located in the region of nonzero magnetic field and moves in this field. And the main, emf is excited in the immediate interaction of outer field in the region of wire, with charges of this wire moving in this field with the wire. It also follows from this, inequal emf is induced along the wire. The distribution of this emf depends on the magnetic field distribution and charges velocity in this field. In particular, in case of unipolar generator at the axis of disk there will be induced a minimal emf, as in this region the charges velocity is minimal. While we measure the emf consisting of induced emfs in elementary parts of secondary loop, and we have to take this feature into account in study of electromagnetic induction. 

Similarly, "if any rigid closed conducting loop moved onward in a homogeneous magnetic field, no emf (total emf is meant ( authors) arises in this loop, as the magnetic flux bonded with it will remain constant (due to the filed homogeneity). With it in separate parts of loop there can arise the emfs, but their algebraic sum will be zero, as the values of oppositely acting emfs will be equal" [2, p. 424]. And this revelation of local emfs at zero total emf over the loop is important to understand the induction in moving wire in magnetic field, because, should the emf be induced in the loop as the whole, local emfs in the loop sides would not arise. They can arise only in case if Faraday formulation was true. And we can easily detect them, terminating the taps to the opposite sides of closed loop. This also shows that Maxwell's integral formulation describes the induction only mathematically, even noting the change of idea of secondary loop which we made above, while Faraday formulation exactly describes the induction both phenomenologically and mathematically.

Having cleared up the meaning of induction in a moving wire and seeing that the phenomenology of induction is determined by Faraday formulation, we can return and to study the analogy between the induction in permanent and time-variable magnetic fields. We will see, now this analogy is established on the basis of Maxwell, not Faraday formulation ( just the formulation that does not reflect the essence of process. Actually, "When two loops with the current (1 and 2) are in the magnetic fields of each other (Fig. 4), with every change of intensity of current in one of loops, the flux bonded with another loop changes, and in this last the emf is induced. Such phenomenon is called the inter-induction" [2, p. 450].



Fig. 4. Explanation of inter-induction of loops. Copied from [2, p. 450]

Noting the above study, we can considerably improve the interpretation of inter-induction. Now on the basis of Faraday formulation we have to expect that the magnetic field created by each loop directly interacts with the charges of wire of second loop, exciting the emf along the loop as the sum of emfs of local interactions of magnetic field with the parts of second loop. The features introduced into the induction due to time-dependence of magnetic field are added to this.

The first thing which we have to note is that the analogy between the movable wire in permanent field and immovable wire in time-variable field is broken by the known fact that magnetic field does not supply work, as it affects the charged body perpendicularly to its motion. In case when the wire moved, "the positive work of forces affecting the wire (ponderomotive forces) is equal to the negative work of emfs induced in the wire, so the full work of magnetic forces is zero" [2, p. 423]. In other words, in the process of induction the magnetic field is only the connection between the affecting force doing the work and the wire in which this work is done. And in case of stationary wire in time-variable field, the charges in wire can be thought stationary in average, as the direction of their motion is absent and the average velocity of their chaotic motion is zero, only the amplitude of magnetic field varies. But in accordance with standard theory, this field itself does not do the work. So, if we grounded on the standard formulation, the essence will not change ( no matter, is the field permanent or variable. However, the experience shows that the variable magnetic field excites the emf in secondary loop, which means that the very variable field does supply work, exciting the directed motion of charges in the secondary loop. There is no external affection in this case, except the magnetic field. But if it is so and the very variable field is able to accelerate the charges in a definite direction, this changes the very idea of magnetic field and its basic properties.

One more difficulty follows from this. Basically, so different properties of permanent and variable magnetic fields could be interpreted as an existence of two independent fields, each of which has its own properties, ( and so we suggested in [1]. But in reality we cannot speak of two different (orientation and induction) fields, as these virtual fields have both individual features and identical properties. We can easily make sure of it, if we put the above unipolar generator (Fig. 3) to the variable magnetic field. In this case, with the stationary disk in the secondary circuit, the emf will be induced in full accordance with Faraday law of induction. And we will detect the maximal induction emf, when the inducing field is directed in parallel to the plane of disk, and that will be minimal, when it is perpendicular to the plane of disk. If we choose some intermediate direction of magnetic field and rotate the disk, we will see the induction emf growing. The maximal addition will take place, when the magnetic field is directed normally to the plane of disk, i.e. at the position when the induction addition is minimal! While in the intermediate positions of inductor we will observe the simultaneous affection of two fields, which will increase the induction emf.

This evidences that the magnetic field is integral in its structure but different in its revelations, dependently on its space distribution and time dependence of its amplitude.

One more important feature of induction in time-variable magnetic field follows from this. As is known, in accordance with Biot(Savart(Laplace law, "the strength at each point of magnetic field created by a closed loop of current is such as if it were vectorially combined of strengths created by its separate sections, if we admit (Fig. 5) that the magnetic field strength dH created by each element of loop is in proportion to the current I, length of element dl, sine of angle between the direction dl and radius-vector r drawn from the beginning of considered element to the point at which we determine the magnetic field, and in inverse proportion to the squared distance r" [2, p. 275].



Fig. 5. Explanation of Biot(Savart(Laplace law

In other words, if in Fig. 3 we choose the first loop as the primary, in case of permanent magnetic field
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Given the nature of orientation and induction magnetic field is the same, with the time-variable current going in the primary loop we will yield
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With it the magnetic field will be already determined by the delaying potentials, as the elements of current of primary loop are in general case unequally distanced from the point at which we are observing the field.

Given the vector of magnetic induction is formed just by the magnetic field strength described by (29), we can write the induction emf 
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 excited in the element of wire 
[image: image47.wmf]2

dl

 of the second loop as
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where 
[image: image49.wmf]a

 is the angle between the inducing current and radius-vector from the element of this current to the observation point. We would like to draw your attention that in (30) we intentionally passed from the vector form of record to that scalar. Because, as we said above, the process of excitation of current in stationary secondary wire by the time-variable magnetic field still is not determined finally. So, should we now try to write (30) in standard vectorial form, we would have to note that the magnetic field perpendicular to the secondary wire excites the strength of induction field along the secondary wire. In the Maxwellian formulation this difficulty was avoided through using the idea of vector of secondary loop cross-section and finding the scalar product of vectors of magnetic induction and the loop square. This all the same did not solve the problem, how to describe the process of excitation of current in stationary secondary loop by magnetic field, as all the derivation was reduced to the scalar equality
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in the left-hand part of which we had the scalar product of vectors parallel to the plane of secondary loop, and in the right-hand part ( the scalar product of vectors nonparallel to this plane. It remains unclear from (31), in which way the time-variable field affected the stationary charges. While the analogue of (31) for Faraday formulation is absent and the formula for Lorenz force in its original representation 
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is unable to describe the induction with stationary charges. So we still will confine ourselves to the record for induction emf in non-vectorial form, hoping to improve this expression in the following works, as we will clear the very process of induction in time-variable magnetic field.

Basing on (30), we can easily write the expression for the emf of induction excited along the secondary loop as the whole: 
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The structure of (33) shows that, if we do not abstract from the source of magnetic field, as it is done in the standard mathematical record of electromagnetic induction law, it will appear that the induction is determined by the immediate interaction of the elements of current of the primary and secondary loops. This is in full accordance with the conclusions of [1] obtained on the basis of experimental study of the induction with the help of single probe.

To show it visually, consider the model of two quadratic large-size loops shown in Fig. 6.



Fig. 6. The circuit explaining the induction process with the large-size loops; the green loop is primary, and the blue loop is secondary

If we choose the size of loops so that
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the emf induced in each selected element of the secondary loop will be determined by that part of integral (33) for which r is comparable with h. In this connection, we can neglect the affection of the side CD on the value of emf excited in 
[image: image54.wmf]''
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 of secondary loop, as the condition (34) provides the small affection of this side, because it is far from the side of secondary loop. Thus, with enough accuracy we can write (33) so:
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The expression (35) shows that the induction process is caused by the direct interaction of elements of current of primary and secondary loop, which corroborates the said.

The features of induction process revealed in this study, with common physical nature of magnetic field, make the study of nature of this process quite difficult. Not occasionally, speaking of Biot(Savart(Laplace law, Schtrauff underlines: "in reality we deal always with the magnetic field of closed loop, so direct experimental check of Biot(Savart(Laplace law is a hard task" [2, p. 274]. None the less, even at this level of knowledge we can distinguish from masking effects the essence of inductive interaction of time-variable magnetic field with a secondary loop and to clear, which of interpretations ( Maxwell's either Faraday's ( describes the induction process correctly. And we did it practically.
3. Technique of study
The technique developed at our laboratory was based on two experiments which were conducted before with identical primary and secondary loops.

In the first experiment we expected to study the field of closed core, when the distance between its lateral side and one of sides of the secondary loop increased, as shown in Fig. 7.



Fig. 7. The first experiment to study the attenuation of magnetic field of closed core in space: 1 is the closed magnetic core, 2 is the primary winding, 3 is the secondary movable loop, and 4 is the rule

This study was complementary and served to indicate more accurately the velocity of induction emf decrease in the secondary loop, dependently on, how far this loop was located from the core. This allowed to determine the degree of inhomogeneity of magnetic field, which was necessary in the analysis of the second, main experiment.

The second experiment has been made so. The side of secondary loop nearer to the core was put inside the core and fixed during the experiment, while the further side of loop was approached to the core by way of deformation of lateral sides, as shown in Fig. 8.



Fig. 8. The experiment with deforming loop: 1 is the closed magnetic core, 2 is the primary loop, 3 is the secondary transformed loop, and 4 is the rule

The aim of experiment was to check the regularity of emf variation under the increasing and decreasing area of loop; this allowed to establish unambiguously, which formulation of induction law is true.

Actually, if the induction is induced in the loop as the whole, when the area of secondary loop diminishes, the quantity of force lines of variable magnetic field bonded with this loop will diminish. So, if the Maxwell formulation is true, when approaching the outer side of secondary loop to the core, we will observe the induction emf diminishing.

But if we consider the induction in view of Faraday formulation, we have to suppose immediate interaction of electrons in the wire with the magnetic field near this wire. In this phenomenology, the approach of outer side of secondary loop will cause the wire outer from the core gradually entering the region of larger amplitude of magnetic field, which will cause the increase of measured emf in the loop as the whole.

Thus, if the inductance in the loop placed to the variable magnetic field obeys the Maxwell phenomenology, the emf has to diminish with the approach of outer side of loop, and if the processes obeyed Faraday phenomenology, it has to increase. As the predicted results are opposite, it enables us to establish distinctively, which conception of induction is true.

4. Description of the first experimental set
We used a standard ferromagnetic E-core which had the width of central leg 20 mm, of side legs 10 mm and the thickness of the package 53 mm. The size of core was 
[image: image56.wmf]8080

mm

´

. The primary winding was reeled up on the side leg of core which had the size 
[image: image57.wmf]1053

mm

´

 and 140 turns of wire with diameter 0,42 mm. The winding was solid, in two layers.

The secondary loop had the size 
[image: image58.wmf]220240

mm

´

 and contained 43 turns of wire with the diameter 0,11 mm. Its plane was placed co-axially with the turns of primary winding. The nearer side was places exactly at the middle of primary winding and height of core, this provided the device symmetrical in the core height.

To measure the emfs induced in the secondary loop, its leads were connected to the input of two-ray oscillograph C1(77, and the primary winding was connected to the generator of low-frequency signals 
[image: image59.wmf]3-56/1 

G

and to the first input of this oscillograph, in accordance with Fig. 9. The oscillograph was synchronised by the voltage phase at the primary winding.



Fig. 9. Experimental set to study the rate of induction emf diminution with the distance from outer side of core exciting the inhomogeneous magnetic field

Thus, the voltage at the primary winding was controlled at 14 V span on all the frequency range. The data were read out from the oscillograph. For better accuracy of measurement, the mean line of both rays was shifted down the screen of oscillograph. With it the amplitude value of time-variable emf induced in the secondary loop was measured.

5. Results of the first experiment
The experimental results obtained at the above described set are presented in Table 1. 

Table 1. The induction emf with respect to the frequency f and distance h from the nearer side of secondary loop to the core 

f, kHz
h, cm


0
1
2
3
4
5
6
7
8
10
12
14
16
18

200
0.94
0.75
0.62
0.5
0.42
0.35
0.3
0.245
0.22
0.1675
0.13
0.1025
0.0875
0.07

180
2.85
2
1.525
1.15
0.95
0.77
0.63
0.54
0.475
0.355
0.275
0.22
0.175
0.115

170
3.3
1.9
1.15
1
0.76
0.62
0.46
0.38
0.325
0.24
0.18
0.14
0.11
0.09

160
1.55
0.92
0.64
0.46
0.34
0.265
0.2175
0.175
0.14
0.103
0.076
0.06
0.049
0.036

140
0.78
0.455
0.31
0.225
0.175
0.1325
0.105
0.085
0.07
0.0525
0.04
0.03
0.025


120
0.61
0.33
0.225
0.16
0.122
0.0975
0.0775
0.0635
0.0525
0.04
0.0275
0.0225
0.0175
0.015

100
0.445
0.24
0.175
0.122
0.095
0.075
0.06
0.05
0.041
0.03
0.0225
0.0175
0.015
0.0125

80
0.34
0.21
0.13
0.0975
0.075
0.06
0.05
0.04
0.0325
0.0225
0.0175
0.0135
0.0125
0.01

60
0.3
0.165
0.11
0.079
0.061
0.0475
0.0375
0.03
0.025
0.017
0.012
0.009
0.0075


40
0.27
0.1475
0.0945
0.065
0.05
0.038
0.03
0.024
0.02
0.013
0.009
0.0075
0.006
0.005

20
0.2175
0.11
0.069
0.0495
0.034
0.031
0.02
0.016
0.0125
0.009
0.006
0.005
0.004


18
0.215
0.1
0.06
0.0425
0.032
0.025
0.019
0.015
0.012
0.009
0.006
0.005
0.004


16
0.205
0.0975
0.057
0.042
0.03
0.0225
0.018
0.014
0.012
0.008
0.006
0.004
0.003


14
0.203
0.095
0.0575
0.039
0.03
0.0225
0.0175
0.014
0.012
0.007
0.005
0.004



12
0.205
0.1
0.055
0.0375
0.029
0.022
0.017
0.014
0.012
0.008
0.006
0.005



10
0.186
0.1025
0.055
0.036
0.027
0.02
0.016
0.013
0.01
0.007
0.005
0.004



8
0.205
0.091
0.051
0.0328
0.0248
0.019
0.014
0.0132
0.0092
0.006
0.004
0.0032



6
0.2025
0.096
0.0512
0.0328
0.023
0.0172
0.013
0.01
0.0084
0.0056
0.0036
0.0028



4
0.2025
0.091
0.0476
0.031
0.022
0.016
0.012
0.0096
0.0076
0.0052
0.0036
0.0028



2
0.2025
0.094
0.0524
0.032
0.0224
0.016
0.012
0.0096
0.0076
0.0048
0.0032
0.0024



1.8
0.203
0.09
0.05
0.0296
0.021
0.0156
0.0116
0.0092
0.0068
0.0048
0.0032
0.0024



1.6
0.194
0.091
0.0476
0.029
0.021
0.0156
0.0116
0.0105
0.0087
0.0062
0.0048
0.004



1.4
0.18
0.0284
0.047
0.031
0.0215
0.0165
0.0125
0.0104
0.0085
0.0063
0.0046
0.0038



1.2
0.17
0.083
0.0448
0.0286
0.021
0.016
0.012
0.01
0.0082
0.006
0.0046
0.004



1
0.1525
0.0795
0.044
0.0265
0.0192
0.0145
0.0115
0.0095
0.0078
0.0058
0.0046
0.004



0.8
0.142
0.064
0.036
0.0236
0.017
0.013
0.0105
0.0088
0.0072
0.0055
0.0042
0.0038



0.6
0.113
0.052
0.0315
0.0205
0.015
0.0115
0.009
0.0076
0.0064
0.005
0.004
0.0035



0.4
0.0836
0.039
0.0232
0.0156
0.0115
0.0095
0.0074
0.0064
0.0055
0.0044
0.0036
0.0034



0.2
0.0955
0.0212
0.0195
0.0105
0.008
0.0065
0.0055
0.0046
0.0044
0.0036
0.0032
0.003



To visualise, we show in Fig. 10 in different views the 3 D diagram plotted on the basis of data shown in Table 1.



Fig. 10. The induction emf of the outer secondary loop against the frequency f of alternating current and distance h from the nearer side of this loop to the lateral side of core

In this diagram we see two features. First, at the frequency band 170 kHz we see the resonance peak which abruptly increases the induction emf at the measured distances from the core. This tells that, in order this peak to be unable to distort the measurement, we have to study the inductance at the range well less than the resonance peak frequency.

In Fig. 11 we show the close-up of low-frequency part of the diagram shown in Fig. 10, 200 Hz to 80 kHz.



Fig. 11. The low-frequency part of diagram shown in Fig. 10 (200 Hz to 80 kHz)

We see in this diagram that in the region of core the magnetic field monotonously falls with the distance from loop to the core. The decrease is strongly nonlinear; in accordance with the above study, this enables us to reveal the interaction of each side of loop with the magnetic field of core. However, before we obtain the results of the second, main experiment, we may not conclude, nor analyse. We only can indicate a considerable nonlinearity of magnetic field in the near of core, which limits us to the band up to 80 kHz, in order to obtain the reliable information about the induction emf in the secondary loop, when we carry out the main experiment.

6. Description of the second experimental set
As we already said in the item 3, the second experiment differed only in the location of secondary loop as to the rod of core. In this experiment the inner side of loop was located in the window of core and was fixed as to it, as shown in Fig. 12.



Fig. 12. Experimental set to measure the emf amplitude in the secondary loop, when the loop area diminished

During the experiment, the outer side of loop has been brought from the core, retaining its geometry. The area of secondary loop changed nonlinearly, indeed. Basically, we could calculate the change, thinking the area of secondary loop as the sum of two ellipses and the rectangle, but we have no necessity in it, as the target of this experiment is not to measure the degree of nonlinearity of the magnetic field strength in the near of core. For this purpose we have conducted the first experiment with the unchanged shape of secondary loop and already established this fact. As we emphasised above, in the present experiment we are interesting in the direction of emf amplitude change with the change of area of secondary loop. Dependently on, whether the amplitude of emf will increase either decrease with the increasing area of secondary loop, we can unambiguously establish, which formulation is true. The fact of adjustable change of the area of secondary loop, which can take the same size when measuring the emf at different frequencies (by way of fixing the position of the outer side of secondary loop in relation to the rule) can be thought satisfying for this purpose.

7. Results of the second experiment
Despite in the course of the first experiment we revealed  the resonance in the secondary loop at the frequencies higher than 80 kHZ, which limited the usable frequency range, we conducted the second experiment at the same range, 200 Hz to 200 kHz. The results of this experiment are presented in the Table 2.

Table 2. The induction emf in the deformed secondary loop with respect to the frequency f and distance h from the outer side of secondary loop to the core (the resonance maximums are denoted in red, and minimums characterising the boundary processes described in the text are denoted in blue)

F, kHz
h, cm


0
1
2
3
4
6
8
10
12
14
16
18

200
32.5
20
14.5
11.5
9.8
7.9
6.7
5.9
5.4
5.1
4.9
4.9

190
22.25
29.25
30.5
27
22.25
15.5
12.25
10.4
9.2
8.5
8


180
13.75
15.75
18.75
23
27.5
28.5
24.5
20.25
17
15.25
14
14

170
8.9
9.4
10.3
11.75
13
16.25
20
28.75
27
28.5
29.5
29.5

160
7
7.2
7.7
8.2
8.9
10.2
14
13
14.5
15.75
16.75
17

140
4.45
4.3
4.35
4.45
4.55
4.75
4.95
5.15
5.3
5.9
5.95
5.95

120
3.5
3.35
3.3
3.32
3.35
3.4
3.47
3.55
3.61
3.6
3.65
3.65

100
3.1
2.885
2.825
2.81
2.81
2.825
2.85
2.875
2.9
2.95
2.95
2.9

80
2.675
2.5
2.425
2.41
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4

60
2.5
2.335
2.285
2.25
2.25
2.225
2.225
2.225
2.225
2.225
2.225
2.225

40
2.4
2.25
2.2
2.175
2.15
2.145
2.135
2.135
2.135
2.135
2.135
2.135

20
2.36
2.21
2.15
2.14
2.125
2.11
2.1
2.1
2.1
2.1
2.1
2.1

18
2.325
2.225
2.175
2.15
2.135
2.11
2.1
2.1
2.1
2.1
2.1
2.1

16
2.35
2.215
2.175
2.1156
2.113
2.115
2.1
2.1
2.1
2.1
2.1
2.1

14
2.36
2.225
2.175
2.15
2.14
2.125
2.12
2.115
2.11
2.11
2.1
2.1

12
2.38
2.225
2.175
2.16
2.15
2.13
2.125
2.12
2.115
2.115
2.11
2.11

10
2.36
2.23
2.175
2.15
2.15
2.1125
2.12
2.115
2.11
2.11
2.11
2.11

8
2.39
2.225
2.175
2.216
2.215
2.135
2.125
2.125
2.125
2.125
2.125
2.125

6
2.385
2.24
2.175
2.15
2.14
2.125
2.125
2.125
2.125
2.125
2.125
2.125

4
2.375
2.225
2.175
2.145
2.13
2.12
2.11
2.11
2.11
2.11
2.11
2.11

2
2.3
2.175
2.125
2.1
2.085
2.075
2.07
2.07
2.065
2.065
2.065
2.065

1.8
2.30
2.175
2.125
2.1
2.09
2.075
2.075
2.075
2.07
2.065
2.065
2.065

1.6
2.275
2.14
2.1
2.09
2.075
2.06
2.05
2.05
2.05
2.05
2.05
2.05

1.4
2.225
2.125
2.075
2.06
2.05
2.045
2.045
2.04
2.04
2.04
2.04
2.04

1.2
2.2
2.1
2.06
2.05
2.04
2.03
2.025
2.025
2.02
2.02
2.02
2.02

1
2.15
2.075
2.04
2.025
2.01
2.01
2
2
2
2
2
2

0.8
2.1
2.04
2
1.995
1.99
1.985
1.98
1.98
1.975
1.975
1.975
1.975

0.6
2.05
2
1.975
1.965
1.961
1.955
1.95
1.95
1.95
1.95
1.95
1.95

0.4
1.975
1.945
1.94
1.93
1.93
1.925
1.925
1.92
1.915
1.915
1.915
1.915

The diagram of emf induced in the secondary loop with respect to the loop size and frequency of current in the primary winding, which was plotted on the basis of values shown in Table 2, is shown in different views in Fig. 13.



Fig. 13. The diagram of variation of emf induced in the secondary loop dependently on the frequency f of current in the primary winding and on the distance h from the outer side of secondary loop to the core

We see from the Table 2 and Fig. 13 that, just as in the first experiment, in the region 170 kHz there is an extreme of emf. But in distinct from the first experiment, the emf varies in much more complicated way, and the resonances are revealed not at one frequency but at the band 120 kHz to 200 kHz. This is because in the second experiment we do not retain the geometry of secondary loop. So the maximum of emf can appear not only with fully moved aside from the core outer side of the loop, but also at its intermediate positions ( and we see it at the frequencies 120(200 kHz. It is well seen in the table, how the maximums of amplitude gradually shift from small to large values h, which corresponds to the growing area of the loop, which relates to the resonance and, as relates, to growing inductance and, consequently, to the fall of resonance frequency. Especially interesting are the measured data at 120 and 140 kHz. These are the boundary frequencies at which simultaneously reveal both the resonance properties of loop and the dependence of emf on the distance h from the outer side of secondary loop to the core. Due to this, the dependencies of emf on h have minimums shifting as the frequency falls towards larger h, just as the maximums of above analysed resonances. In Fig. 14 we show separately the plot corresponding to the boundary frequency 120 kHz. 



Fig. 14. Induction emf in the secondary loop against the distance h from outer side of secondary loop to the core at the frequency in the primary loop f = 120 kHz
We see in this plot that when f changed from zero to 2 cm, the emf amplitude in the secondary loop falls, and at larger distances from the outer side of loop to the core the amplitude grows after the regularity typical for resonance curves. This evidences that when we move the outer side of loop away from core, the very process of induction decreases, though the area of secondary loop grows, and the quantity of force lines crossing the loop also grows. Thus, with this curve we already can judge that Faraday, not Maxwell formulation of induction law is true, and the further study will only corroborate this conclusion.

Analysing the experimental result further, we have to mark that lower the frequency 80 kHz which we chose above, the resonance processes in the secondary loop are over and we can reliably observe the variation of emf induced in this loop with the transformation of this last. The diagram of emf for the low-frequency part of range is shown in Fig. 15.



Fig. 15. The amplitude of induction emf with respect to the frequency f of current in the primary loop and distance h from the outer side of secondary loop from the core 

In this plot we see that in all the low-frequency range the emf monotonously decreases with the distance h from the outer side of secondary loop to the core. This means that with the growing size of secondary loop and, accordingly, with growing quantity of force lines of magnetic field crossing this loop, the emf falls. This opposes the prediction which followed from the Maxwell formulation.

To analyse the obtained results from the view of Faraday approach, we have to take into account that in accordance with this approach, the induction emf is excited, resulting from direct affection of the strength of magnetic field in the region of loop wires, with electrons of loop wires. Proceeding from such approach, in case of considered experimental set, the emf is excited only in the inner and outer sides of loop. Lateral sides practically do not participate in induction, as they specially were considerably distanced from the core. So, when the outer side is closer to the core, the emf is excited in both sides of secondary loop. And when the outer side is maximally distanced from the core, the emf in it does not excite, the same as in the lateral sides, because, as we revealed in the first experiment, the amplitude of magnetic field strength is in this region practically zero. From this, to determine the emf induced in the outer side of loop, we have to subtract from the values of emf for all intermediate h the values of emf for maximally distanced position of the outer side. The calculated values of differences of emf amplitudes are presented in Table 3.

Table 3. Dependence of the induction emf in the outer side of secondary loop on the frequency f of current in the primary loop and on the distance h from this side to the core

f, kHz
h,  cm


0
1
2
3
4
6
8
10
12
14
16
18

80
0.275
0.1
0.025
0.01
0
0
0
0
0
0
0
0

60
0.275
0.11
0.06
0.025
0.025
0
0
0
0
0
0
0

40
0.265
0.115
0.065
0.04
0.015
0.01
0
0
0
0
0
0

20
0.26
0.11
0.05
0.04
0.025
0.01
0
0
0
0
0
0

18
0.225
0.125
0.075
0.05
0.035
0.01
0
0
0
0
0
0

16
0.25
0.115
0.075
0.0156
0.013
0.015
0
0
0
0
0
0

14
0.26
0.125
0.075
0.05
0.04
0.025
0.02
0.015
0.01
0.01
0
0

12
0.27
0.115
0.065
0.05
0.04
0.02
0.015
0.01
0.005
0.005
0
0

10
0.25
0.12
0.065
0.04
0.04
0.0025
0.01
0.005
0
0
0
0

8
0.265
0.1
0.05
0.091
0.09
0.01
0
0
0
0
0
0

6
0.26
0.115
0.05
0.025
0.015
0
0
0
0
0
0
0

4
0.265
0.115
0.065
0.035
0.02
0.01
0
0
0
0
0
0

2
0.235
0.11
0.06
0.035
0.02
0.01
0.005
0.005
0
0
0
0

1.8
0.235
0.11
0.06
0.035
0.025
0.01
0.01
0.01
0.005
0
0
0

1.6
0.225
0.09
0.05
0.04
0.025
0.01
0
0
0
0
0
0

1.4
0.185
0.085
0.035
0.02
0.01
0.005
0.005
0
0
0
0
0

1.2
0.18
0.08
0.04
0.03
0.02
0.01
0.005
0.005
0
0
0
0

1
0.15
0.075
0.04
0.025
0.01
0.01
0
0
0
0
0
0

0.8
0.125
0.065
0.025
0.02
0.015
0.01
0.005
0.005
0
0
0
0

0.6
0.1
0.05
0.025
0.015
0.011
0.005
0
0
0
0
0
0

0.4
0.06
0.03
0.025
0.015
0.015
0.01
0.01
0.005
0
0
0
0

Before we analyse the data of Table 3, we have to mark the low accuracy of emf values yielded in subtraction, because the value of emf induced in the inner side of loop well exceeds that induced in the outer side. For example, at 
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, and the table 2 for 
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. Thus, the ratio of emf induced in the outer side of secondary loop to that induced in the inner side is 0,115 ( only 10 %. As both values were measured accurate to dimension of numbers shown in Table 2, in subtraction the error grows in proportion to the decrease of difference, i.e. in 8,73 times. So the diagram plotted after the values presented in Table 3 can be considered only as a qualitative pattern of regularity. The smoothed plot of induction emf in the outer side of loop with respect to f  and h is shown in Fig. 16.



Fig. 16. Induction emf in the outer side of loop with respect to the frequency f of current in the primary winding and to the distance h from this side to the core

Despite the indicated limitation in accuracy of results for the outer side of secondary loop, we see that the values of emf presented in Table 3 coincide, in limits of error, with the values of Table 1. At the same time, the emf variation in all the studied range lower than 80 kHz, which is presented in Fig. 16, corresponds to the results obtained in the first experiment and shown in Fig. 11. In both cases, with the loop size distanced from the core the emf monotonously falls, which is fully opposite to the Maxwell formulation and fully corresponds to the Faraday definition of induction.

Thus, both in the first and second experiment, the emf of induction is excited not in the secondary loop as the whole but in its definite parts, and in each part the amplitude of emf is proportional not to the total flux through the secondary loop, but to the value of magnetic field strength at the location of loop wire. In particular, this explains the unequal value of emf inducing in the inner and outer wires of secondary loop in the second experiment. As the inner wire of secondary loop is surrounded by the core, the induced emf will be proportional to the sum of emf induced by the whole surface of core. While for the outer wire the emf is induced only by the outer side of core, whose field is not concentrated, as in the window of transformer core, but is scattered, whereupon the inhomogeneous field, which we measured in the first experiment, is formed. Should we measure the field in the window of core, we would obtain practically equal values in the whole cross-section. Only in the corners of window the emf would negligibly grow on the inhomogeneities of core.

The obtained theoretical and experimental results fully corroborate that we legally used in [1] the compensative loop to measure the induction emf induced in the single rod. With quite large distance from tapping sides of loop and with low frequency of inducing field, the emf induced in these sides will be practically zero. We should mark, with the same result we can use single loops instead those compensative, if keeping a considerable distance of idle sides of loop from the studied core.

Conclusions
Having conducted the above theoretical and experimental study, we established the following:

( Faraday differential formulation and Maxwell integral formulation of induction are not identical. Faraday formulation is both mathematically and phenomenologically true for any type of magnetic field and any motion of a wire in this field, while Maxwell formulation remains true only mathematically and only in case of closed loop with movable side;

( as the domain where the Maxwell definition is true is limited, it bans the use of this phenomenology of induction as an analogy in transition from movable wire in permanent magnetic field to stationary wire in time-variable magnetic field.

These theoretical conclusions have been checked experimentally. We developed the set to measure the emf in the loop, whose location and area were changed in the inhomogeneous magnetic field. With it we indicated that with growing area and quantity of force lines crossing the loop, the emf in the loop felt. This fully corresponds to the Faraday's formulation of the induction law, and this is opposite to Maxwell's interpretation.

The experiments also show that when we brought the tapping wires of secondary loop away from the core, the emf is not induced in them, which fully proves legal the use of single probe to measure emf in a local variable magnetic field.
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