т.2 No 2

25

Волны сжатия в стержне

Для нахождения зависимости rocut.gif (841 bytes)(x_cap.gif (850 bytes), t) необходимо прежде определить закон изменения сечения, обусловленного продольной деформацией стержня. Учитывая результаты исследования, проведенного в п.2 данной работы, мы имеем право записать

(30)

где epsiloncut.gif (833 bytes) и epsiloncut.gif (833 bytes)'  продольная и соответствующая ей поперечная деформации стержня.

Введя далее epsiloncut.gif (833 bytes)'  и epsiloncut.gif (833 bytes) в виде

(31)
окончательно получим интересующую нас зависимость между продольной и поперечной деформацией:

(32)
или при стремлении deltabig.gif (843 bytes)x_cap.gif (850 bytes),, а соответственно и  deltabig.gif (843 bytes)xo.gif (847 bytes)  к нулю

(33)
Находя значение производной de.gif (845 bytes)x_cap.gif (850 bytes)/de.gif (845 bytes)xo.gif (847 bytes)   на основании решения (29), найдем закон изменения радиуса стержня при продольных колебаниях в виде

(34)

Как и прогнозировалось в п. 2 данной работы, решение (34) совместно с (29) показывает, что скорость распространения продольной и поперечной волн одинакова, чем преодолевается ранее рассмотренное противоречие, связанное с возможностью локального утонения стержня при укорочении.

Чтобы получить полную картину процесса распространения поперечной волны необходимо, как и в случае с бесконечной точкой линии, учесть, что значение   r_cap.gif (846 bytes)  в выражении (34) определяется в точках x_cap.gif (850 bytes), а не xo.gif (847 bytes). Таким образом, зависимость   r_cap.gif (846 bytes)(x_cap.gif (850 bytes), t) должна быть представлена в параметрическом виде:

(35)

Представленная система (35) описывает поперечную деформированную волну, распространяющуюся по боковой поверхности стержня. Ее общий вид показан на фиг. 5. Из построения видно, что деформация волны визуально увеличивается с ростом амплитуды воздействующей силы, и эти волны имеют форму “мертвой зыби”, распространяющейся вдоль стержня. Таким образом, как и в случае с одномерной упругой линией, можно утверждать, что ряд процессов, до сих пор относимых исследователями к нелинейным, вполне описывается в рамках линейной модели.

 

fig3.gif (4554 bytes)

Рис. 3. Общий вид поперечных волн, распространяющихся в полубесконечном стержне конечного сечения при различных амплитудах внешней силы F0

Содержание: / 17 / 18 / 19 / 20 / 21 / 22 / 23 / 24 / 25 / 26 / 27 /

Hosted by uCoz