СЕЛФ

90

С.Б. Каравашкин и О.Н. Каравашкина

3. Исследование одномерной однородной упругой линии при равенстве коэффициентов продольной и поперечной жёсткости

Данная модель упругой линии может быть использована при исследовании задач, сводящихся к бесконечно тонким стержням, однородным, изотропным материалам и т.д.

Характерный вид исследуемой модели приведен на рис. 2. Как было указано выше, главной особенностью данной модели является равенство коэффициентов продольной и поперечной жёсткости. Поэтому на основании доказанной теоремы имеем право не учитывать в моделирующей системе дифференциальных уравнений угол излома alphacut.gif (839 bytes) . При этом данная система примет вид:

fig2.gif (3931 bytes)

Рис. 2. Расчетная схема одномерной упругой линии с изломом на k-м элементе с углом излома alphacut.gif (839 bytes) и равными коэффициентами продольной и поперечной жесткости

 

для x-компоненты

(8)

а для y-компоненты

(9)

где psi.gif (848 bytes) - угол наклона внешней силы к оси x , а F(t) = F0Image539.gif (923 bytes)  - внешняя сила, воздействующая на начало линии.

Используя результаты [20] мы можем сразу записать решения для (8), (9). В докритической частотной области (периодический колебательный режим), при omegacut.gif (838 bytes) < omegacut.gif (838 bytes)0

для x-компоненты

(10)

для y-компоненты

(11)

где Image542.gif (959 bytes), Image543.gif (1041 bytes), i = 1, 2, 3, ....

В закритической частотной области (апериодический колебательный режим), при  omegacut.gif (838 bytes) > omegacut.gif (838 bytes)0 :

для x- компоненты

(12)

для  y- компоненты

(13)

где Image438.gif (1028 bytes).

При критической частоте (критический колебательный режим), при omegacut.gif (838 bytes) = omegacut.gif (838 bytes)0 :

для x-компоненты

(14)

для  y-компоненты

(15)

Содержание: / 86 / 87 / 88 / 89 / 90 / 91 / 92 / 93 / 94 / 95 / 96 / 97 / 98 / 99 / 100 /

Hosted by uCoz